Genetic diversity and wing morphometrics among four populations of Aedes aegypti (Diptera: Culicidae) from Benin - Parasites & Vectors

Genetic diversity and wing morphometrics among four populations of Aedes aegypti (Diptera: Culicidae) from Benin – Parasites & Vectors

  • Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, Aribodor OB, et al. Climate and urbanization drive the selection of mosquitoes for humans. Curr Biol. 2020;30:3570–9.

    CAS Article PubMed PubMed Central Google Scholar

  • McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito preference for humans linked to the olfactory receptor. Nature. 2014;515:222–7.

    CAS Article PubMed PubMed Central Google Scholar

  • Powell JR, Gloria-Soria A, Kotsakiozi P. Recent history of Egyptian temples: records of vector genomics and epidemiology. Biological sciences. 2018;68:854–60.

    Article PubMed PubMed Central Google Scholar

  • Obviously PF. Genetic factors of Egyptian temples problem. Ann Trop With Parasitol. 1957;51:392–408.

    CAS Article PubMed Google Scholar

  • Powell JR, Tabachnick WJ. The history of domestication and the spread of Egyptian temples— review. Mem Inst Oswaldo Cruz. 2013;108:11–7.

    Article PubMed PubMed Central Google Scholar

  • Suesdek L. Microevolution of medically important mosquitoes – a review. Acta Trop. 2019;191:162–71.

    PubMed Article Google Scholar

  • Maynard AJ, Ambrose L, Bangs MJ, Ahmad R, Butafa C, Beebe NW. The geography and history of the invasion of Egyptian temples (Diptera: Culicidae) Southeast Asia and Australasia. Evol Appl. 2023;16:849–62.

    Article PubMed PubMed Central Google Scholar

  • Kotsakiozi P, Evans BR, Gloria-Soria A, Kamgang Basile, Mayanja Martin, Lutwama J, et al. The nature of vector vectors for human diseases: Egyptian temples in the list of its ancestors, Africa. Ecol Evol [Internet]. 2018 [cited 2021 June 30];8(3):7835–48. Available at: www.ecolevol.org.

  • Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al. Global genetic diversity Egyptian temples. Mol Ecol. 2016;25:5377–95.

    Article PubMed PubMed Central Google Scholar

  • Ellegren H, Galtier N. Determinants of genetic variation. Nat Rev Genet. 2016;17:422–33.

    CAS Article PubMed Google Scholar

  • Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, et al. The impact of climate change on mosquito activity: a snapshot of a key entry point in Cyprus. Int J Environ Res in Human Health. 2020;17:1403.

    Article PubMed PubMed Central Google Scholar

  • Rochlin I, Faraji A, Ninivaggi DV, Barker CM, Kilpatrick AM. Anthropogenic impacts on mosquito populations in North America over the past century. Nat Commun. 2016;7:13604.

    Article PubMed PubMed Central Google Scholar

  • Escobar D, Ortiz B, Urrutia O, Fontecha G. Genetic variation among four populations Egyptian temples (Diptera: Culicidae) from Honduras as revealed by mitochondrial DNA cytochrome oxidase I. Pathogens. 2022;11:620.

    Article PubMed PubMed Central Google Scholar

  • Wang G, Gao J, Ma Z, Liu Y, Wang M, Xing D, et al. Population genetics of Egyptian temples in 2019 and 2020 under different conditions of the dengue outbreak and the COVID-19 epidemic in Yunnan Province, China. Previous Genet. 2023;14:1107893.

    Article PubMed PubMed Central Google Scholar

  • Bouyer J, Ravel S, Dujardin JP, De Meeus T, Vial L, Thévenon S, et al. The social standing of Glossina palpalis gambiensis (Diptera: Glossinidae) by landscape variation in the Mouhoun River, Burkina Faso. J Med Entomol. 2007;44:788–95.

    CAS Article PubMed Google Scholar

  • Wilk-Da-Silva R, De Souza Leal Diniz MMC, Marrelli MT, Wilke ABB. Wing morphometric variation in Egyptian temples (Diptera: Culicidae) from different urban areas. Parasite Vectors. 2018;11:1–9.

    Google Scholar Article

  • Morales-Vargas RE, Phumala-Morales N, Tsunoda T, Apiwathnasorn C, Dujardin JP. The phenetic nature of Aedes albopictus. Infect Genet Evol. 2013;13:242–51.

    PubMed Article Google Scholar

  • Lorenz C, Almeida F, Almeida-Lopes F, Louise C, Pereira SN, Petersen V, et al. Geometric morphometrics in mosquitoes: what has been measured? Infect Genet Evol. 2017;54:205–15.

    PubMed Article Google Scholar

  • Chaiphongpachara T, Juijayen N, Chansukh KK. Wing geometry analysis of Egyptian temples (Diptera, Culicidae), dengue virus, from many geographical areas of Samut Songkhram, Thailand. J Arthropod Borne Dis. 2018;12:351.

    PubMed PubMed Central Google Scholar

  • Padonou GG, Ossè R, Salako AS, Aikpon R, Sovi A, Kpanou C, et al. Entomological assessment of dengue outbreak risk in Abomey-Calavi Commune. Benin Trop Med Health. 2020;48:1–9.

    Google Scholar

  • Tchibozo C, Hounkanrin G, Yadouleton A, Bialonski A, Agboli E, Lühken R, et al. Surveillance of arthropod-borne viruses in Benin, West Africa 2020-2021: discovery of dengue virus 3 Egyptian temples (Diptera: Culicidae). Mil Med Res [Internet]. 2022 Nov 14 [cited 2022 Nov 29];9(1):1–3. Available at: https://pubmed.ncbi.nlm.nih.gov/36372882/.

  • Becker N, Petrić D, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes: identification, ecology and control. London: Springer; 2020.

    Google Scholar Book

  • Schindelin J, Arganda-Carreras I, Frize E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open platform for biological image analysis. Methods of Nat. 2012;9:676–82.

    CAS Article PubMed Google Scholar

  • Adams D, Collyer M, Kaliontzopoulou A, Baken E. Geomorph: software for geometric analysis. R package version 40; 2021. https://cran.r-project.org/package=geomorph.

  • Dujardin JP. Morphometrics is used in medical entomology. Infect Genet Evol. 2008;8:875–90.

    PubMed Article Google Scholar

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from various metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS PubMed Google Scholar

  • Librado P, Rozas J. DnaSP v5: software for in-depth analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.

    CAS Article PubMed Google Scholar

  • Leigh JW, Bryant D. PPART: a comprehensive software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.

    Google Scholar Article

  • Schmidt C, Dray S, Garroway CJ. Genetic parameters and biological patterns of diversity are linked by demographic and ecological opportunity. Evolution (NY). 2022;76:86–100.

    Google Scholar Article

  • Miles LS, Rivkin LR, Johnson MTJ, Munshi-South J, Verrelli BC. Gene flow and genetic drift in urban areas. Mol Ecol. 2019;28:4138–51.

    PubMed Article Google Scholar

  • Chang X, Zhong D, Lo E, Fang Q, Bonizzoni M, Wang X, et al. Genetics of environmental and evolutionary genetics of pesticide resistance in Anopheles sinensis. Parasite Vectors. 2016;9:1–14.

    Google Scholar Article

  • Morales-Vargas RE, Ya-umphan P, Phumala-Morales N, Komalamisra N, Dujardin JP. Climate-related size and shape changes Egyptian temples (Diptera: Culicidae) individuals from Thailand. Infect Genet Evol. 2010;10:580–5.

    PubMed Article Google Scholar

  • Palsson A, Gibson G. Quantitative evolutionary analysis of genes shows that the ancestral dipteran wing vein prepattern is conserved. Drosophila melanogaster. Dev Genes Evol. 2000;210:617–22.

    CAS Article PubMed Google Scholar

  • Petersen V, Devicari M, Suesdek L. High morphological and genetic variability of Ochlerotatus scapularis, a potential vector of filarias and arboviruses. Parasite Vectors. 2015;8:1–9.

    Google Scholar Article

  • #Genetic #diversity #wing #morphometrics #among #populations #Aedes #aegypti #Diptera #Culicidae #Benin #Parasites #Vectors

    Leave a Reply

    Your email address will not be published. Required fields are marked *